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REAL OPTION VALUE  

CHAPTER 14      INCENTIVE OPTIONS               12 March 2016 

 

Incentive options can be viewed using the toolkit implicit in previous chapters of real payoff diagrams, 

entry and exit options, and perpetual American puts and calls.  Incentive options may be granted (or 

required by) governments to encourage early investment in “desirable” projects such as renewable 

energy facilities, infrastructure investments like roads, bridges and other transportation, and in general 

public-private partnerships governing new facilities like schools, hospitals, and recreation areas.  

These incentive options are classified as (i) proportional revenue (or price and/or quantity) subsidies, 

where the market price and/or the quantity of production is uncertain or low, but the subsidy is 

proportional to the quantity produced (ii) supplementary revenue (or price and/or quantity) subsidies, 

where the market price and/or the quantity of production and/or the exogenous subsidy is uncertain (iii) 

revenue floors and ceilings, where the subsidy is related over time to the actual quantities produced or 

market prices. Examples of (i) are so-called Feed-in-tariffs fixed amount subsidies per unit production, 

(ii) renewable “green” certificates, which have an uncertain value but are usually allocated per unit of 

production, and (iii) government minimum revenue guarantees, sometimes accompanied by maximum 

revenue ceilings.     

In addition, governments provide incentives for free or at low cost (sport stadiums, concessions, priority 

access, protection through tariffs, quotas or security) in order to encourage “desirable” activities, or 

investment cost reliefs, consisting of direct grants and soft loans, tax credits or excess depreciation, 

which are not directly considered here, except in examining sensitivities of thresholds and real option 

value to changes in investment costs or taxation.  Some of these incentives can also be characterized as 

incentive options.  Most of these incentives can be evaluated in terms of the real option value compared 

to that paid to the government (taxes, concession and user fees and royalties) weighted against the 

immediate or eventual cost for the government.  Also it is interesting to study the effect on the real 

option value, and on the threshold that justifies immediate investment, of price, quantity and subsidy 

changes.  Who gets/gives what, when, how, and why are almost always critical considerations in 

incentive options.  
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14.1 Proportional Subsidies 

This section considers a menu of possible arrangements, that is some characteristic subsidies for such 

facilities, first where there is no subsidy (Model 1);  then assuming there is a permanent subsidy 

proportional to the revenue (Model 2); finally assuming there is a retractable subsidy proportional to 

the revenue (Model 3), as suggested in the Adkins and Paxson (2014), Appendix.  

Proportional Stochastic Revenue Models 

Consider a perpetual opportunity to construct an electricity generating facility producing Q  MWhrs/pa, 

using solar power, at a fixed investment cost K . This investment cost is treated as irreversible or 

irrecoverable once incurred. The value of this investment opportunity, denoted by ROV, depends on the 

amount of output Q, and the price per unit of output, denoted by P , P*Q=R, revenue.   R is assumed to 

be stochastic and to follow a geometric Brownian motion process: 

 dR Rd dR Rt R Z    (1) 

 where R  denotes the instantaneous risk neutral drift parameter (equals  the asset yield), R  the 

instantaneous volatility,  and dZ  the standard Wiener process.  The differential equation representing 

the value to invest for an inactive investor with an appropriate investment opportunity (based perhaps 

on approval for the facility or a concession for infrastructure) is: 

 

2
2 2 1 1
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1
0.

2
R R

ROV ROV
R R rROV

R R
 

 
  

 
 (2) 

where r  is the risk-free rate.  Adkins and Paxson (2014) show that the solution to (2) is: 

 1

1 1ROV B R
 . (3) 



3 
 

1  is the power parameter for this option value function. Since there is an incentive to invest when R is 

sufficiently high but a disincentive when sufficiently low, the power parameter value is positive. Also, 

the power parameter is determined using the characteristic root equation (which is the positive root of 

a simple quadratic equation) found by substituting (3) in (2): 

 2

1 2 2 2

1 1 2
( )

2 2

r r r 


  

 
     . (4) 

After the investment, the solar plant generates revenue equaling (1+)*R, where  is the permanent 

subsidy proportional to the revenue sold (=0 indicates no possible subsidy).  So from (2), the valuation 

relationship for the operational state is:  

2
2 2 1 1
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1
(1 ) 0.

2
R R

ROV ROV
R R R rROV

R R
  

 
    

 
          (5) 

After the investment (K), the solution to (5) is: 

 
(1 )

R

R

r








. (6) 

Model 1 

The subsidy is set to equal zero in Model 1. If the threshold revenue signaling an optimal investment is 

denoted by 
1R̂ , then: 

  1
1

1

ˆ
1

RR K r





 


. (7) 

The value for the investment opportunity is defined by: 
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where:          
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


.               (9) 

Model 2 

For a positive proportional permanent subsidy  , the corresponding results are: 
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, (10) 

  
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 (12) 

Model 3A  

The probability of a sudden unexpected withdrawal of the subsidy is denoted by  . If the revenue 

threshold signaling an optimal investment is denoted by 
3R̂ , then its solution is found implicitly from:   

    
 

13 3 1
3 1 3

3 3

ˆ ˆ
1 1 1 1

Rr
R K B R

  

   


 

   
              (13) 

where 1B  is from (9).  The value for the investment opportunity is specified by: 
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where:     
  3

1 3
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r


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  



 
 


.          (15) 

3 is the positive root of (4) with  added to r.  For 0  , when there is no likelihood of the subsidy 

being withdrawn unexpectedly, 3 1  and Model 3 simplifies to the Model 2 solution.  It is easy to put 

these formulae into Excel as shown in Figures 1, 2, 3 below.   

Model 3B  

The probability of a sudden unexpected introduction of a permanent subsidy is denoted by  . If the 

revenue threshold signaling an optimal investment is denoted by 
4R̂ , then its solution is found implicitly 

from:       13
3 2 2

3

ˆ ˆ( )
11

Rr
R K B R

r

  

  


 

  
                  (16) 

where 2B  is from (12).  The value for the investment opportunity is specified by:    

   
 
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           (17) 

where:     
31
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 







.                   (18) 

For 0  , when there is no likelihood of an unexpected introduction of a permanent proportional  

subsidy, Model 3B simplifies to the Model 1 solution. 
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Figure 1 

 

 

Figure 2  illustrates a subsidy of =1, which results in a threshold R*=R, justifying  immediate investment.   

Figure 3 shows that when the probability of subsidy withdrawal is zero, Model 3A is reduced to Model 2 

in Figure 2. 

Figure 4A shows Model 3A with a positive probability of withdrawal, which reduces R* significantly, a 

“flighty bird in hand” motivates early investment. 
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                         REVENUE MODEL 1

INPUT Stochastic R

P 22.50 Per MWhr

Q 10.00 MWhrs/per annum

R 225.00 B3*B4

K 4000.00 Per Capacity of 10 MWhrs/per annum

 0.20 Template

r 0.08 Given

 0.04 Template

 0.00 NO SUBSIDY
r 0.04 B8-B9

 0.00 Probability

OUTPUT   

ROV1 2456.34 IF(B5<B18,B17*(B5^B16),B15)  

V-K 1625.00 ((1+B10)*B5/B11)-B6  

1 1.5616   

B1 0.5215 (B18^(1-B16))/(B16*B11)  

R* 444.92 B6*B11*(B16/(B16-1))  

1 (1/B7^2)*(-(B11-0.5*(B7^2))+SQRT((B11-0.5*(B7^2))^2+(2*B8)*(B7^2)))
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Figure 2 
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                         REVENUE MODEL 2

INPUT Stochastic R

P 22.50

Q 10.00

R 225.00 B3*B4

K 4000.00

 0.20

r 0.08

 0.04

 1.00  
r 0.04 B8-B9

 0.00 Probability

OUTPUT   

ROV2 7250.00 IF(B5<B18,B17*(B5^B16),B15)  

V-K 7250.00 ((1+B10)*B5/B11)-B6

1 1.5616   

B2 1.5392 ((1+B10)*B18^(1-B16))/(B16*B11)  

R* 222.46 (B6*B11/(1+B10))*(B16/(B16-1))  

1 (1/B7^2)*(-(B11-0.5*(B7^2))+SQRT((B11-0.5*(B7^2))^2+(2*B8)*(B7^2)))
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Figure 3 
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                         REVENUE MODEL 3

INPUT Stochastic R

P 22.50

Q 10.00

R 225.00 B3*B4

K 4000.00

 0.20

r 0.08

 0.04

 1.00  
r 0.04 B8-B9

 0.00 Probability

OUTPUT   

ROV3 7250.00 IF(B5<B18,B17*(B5^B16)+B24*(B5^B23),B15) 14

V-K 7250.00 ((1+(1-B12)*B10)*B5/B11)-B6

3 1.5616  4

B3 1.0178  15  

R*3 222.46    

Solver 0.0000 Set B19=0, Changing B18 13

1 1.5616   

B1 0.5215   

R*1 444.92   

3 (1/B7^2)*(-(B11+B12-0.5*(B7^2))+SQRT((B11+B12-0.5*(B7^2))^2+(2*(B8+B12)*(B7^2))))

R*3 ((B6*B11)/(1+(1-B12)*B10))*(B16/(B16-1))+B24*(B18^B23)*((B16-B23)/(B16-1))-B18

B3 ((1+(1-B12)*B10)*B18^(1-B16))/(B16*B11)-(B23/B16)*B24*(B18^(B23-B16))
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Figure 4A 
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                         REVENUE MODEL 3A

INPUT Stochastic R

P 22.50

Q 10.00

R 225.00 B3*B4

K 4000.00

 0.20

r 0.08

 0.04

 1.00  
r 0.04 B8-B9

 0.10 Probability

OUTPUT   

ROV3 6687.50 IF(B5<B18,B17*(B5^B16)+B24*(B5^B23),B15)  

V-K 6687.50 ((1+(1-B12)*B10)*B5/B11)-B6

3 1.2426   

B3 11.9792    

R*3 56.65    

Solver 0.0000 Set B19=0, Changing B18  

1 1.5616   

B1 0.5215   

R*1 444.92   

3 (1/B7^2)*(-(B9+B12-0.5*(B7^2))+SQRT((B9+B12-0.5*(B7^2))^2+(2*(B8+B12)*(B7^2))))

R*3 ((B6*B11)/(1+(1-B12)*B10))*(B16/(B16-1))+B24*(B18^B23)*((B16-B23)/(B16-1))-B18

B3 ((1+(1-B12)*B10)*B18^(1-B16))/(B16*B11)-(B23/B16)*B24*(B18^(B23-B16))
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Figure 4B 
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                         REVENUE MODEL 3

INPUT Stochastic R

P 22.50

Q 10.00

R 225.00 B3*B4

K 4000.00

 0.20

r 0.08

 0.04

 1.00  
r 0.04 B8-B9

 0.10 Probability

OUTPUT   

ROV3 6687.50 IF(B5<B18,B17*(B5^B16)+B24*(B5^B23),B15) 14

V-K 6687.50 ((1+(1-B12)*B10)*B5/B11)-B6

3 1.2426  4

B3 11.9792  15  

R*3 56.65    

Solver 0.0000 Set B19=0, Changing B18 13

1 1.5616   

B1 0.5215   

R*1 444.92   

3 (1/B7^2)*(-(B11+B12-0.5*(B7^2))+SQRT((B11+B12-0.5*(B7^2))^2+(2*(B8+B12)*(B7^2))))

R*3 ((B6*B11)/(1+(1-B12)*B10))*(B16/(B16-1))+B24*(B18^B23)*((B16-B23)/(B16-1))-B18

B3 ((1+(1-B12)*B10)*B18^(1-B16))/(B16*B11)-(B23/B16)*B24*(B18^(B23-B16))
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Figure 4B shows Model 3B with a positive probability of permanent subsidy that cannot be withdrawn, 

which increases R* significantly, as investors presumed to have a proprietary option to invest await for 

the desired benefit, deferring investment. 

14.2  Exogenous Subsidies  

Model 4   Stochastic Price, Subsidy and Quantity 

Now consider a perpetual opportunity to construct a renewable energy facility at a fixed investment 

cost K , where the subsidy is exogenous like a “green certificate”. The value of this investment 

opportunity, denoted by 1F , depends on the amount of output sold per unit of time, denoted by Q, the 

market price per unit of output, denoted by P , and the subsidy per output unit, S.  In the general model, 

all of these variables are assumed to be stochastic and are assumed to follow geometric Brownian 

motion processes (gBm): 
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                         REVENUE MODEL 3B

INPUT Stochastic R

P 22.50

Q 10.00

R 225.00 B3*B4

K 4000.00

 0.20

r 0.08

 0.04

 1.00  
r 0.04 B8-B9

 0.10 Probability

OUTPUT   

ROV4 7108.92 IF(B5<B18,B17*(B5^B16)+(B12/(B8+B12))*B22*(B23^B21),B15)  

V-K 2187.50 (1+B12*B10)*B5/B11-B6

3 1.2426  

B4 3.7637 ((1+B10*B12)*B18^(1-B16))/(B16*B11)  

R*4 1481.88   

3 (1/B7^2)*(-(B11+B12-0.5*(B7^2))+SQRT((B11+B12-0.5*(B7^2))^2+(2*(B8+B12)*(B7^2))))

R*4 (B16/(B16-1))*(B11/(1+B10*B12))*(B6+(B12/(B8+B12))*B22*(B23^B21))

1 1.5616  

B2 1.5392  

R*2 222.4621
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 d d dX XX X t X Z    (1) 

for  , ,X P S Q , where   denotes the risk neutral instantaneous drift parameter,   the 

instantaneous volatility,  and dZ  the standard Wiener process. Potential correlation between the 

variables is represented by  .  

The partial differential equation (PDE) representing the value to invest for an inactive firm with an 

appropriate perpetual investment opportunity (based on perhaps approval for the facility or a 

concession for infrastructure) is: 

 

2 2 2
2 2 2 2 2 21 1 1

2 2 2

2 2 2

1 1 1

1 1 1
1

1 1 1

2 2 2

0.

P Q S

PQ P Q PS P S QS Q S

P Q S

F F F
P Q S

P Q S

F F F
PQ PS QS

P Q P S Q S

F F F
P Q S rF

P Q S

  

        

  

  
 

  

  
  

     

  
    

  

 (2) 

where r  is the risk-free rate. Following Adkins and Paxson (2016), when P,Q, or S are below ˆ ˆˆ, ,P Q S  

that justify immediate investment, the solution to (2) is: 

 1 1 1

1 1 1ROV F A P Q S
  

  . (3) 

where 1  , 
1 and 1  are the power parameters for this option value function. Since there is an incentive 

to invest when P , Q and S are sufficiently high but a disincentive when these are sufficiently low, we 

expect that all power parameter values are positive. Also, the parameters are linked through the 

characteristic root equation found by substituting (3) in (2): 

 

       2 2 21 1 1
1 1 1 1 1 1 1 1 12 2 2

1 1 1 1 1 1

1 1 1

, , 1 1 1

0

P Q S

PQ P Q PS P S QS Q S

P Q S

Q

r

           

              

     

      

 

    

. (4) 

After the investment, the plant generates revenue equaling PQ  + SQ , with the present value factor of 

parts of this net revenue denoted  kP,  kQ and kS (no operating costs or taxes) (life assumed to be T=20 

years in the base case)1.  

                                                           
1
 This is the methodology in Boomsma  and Linnerud (2015). 
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 



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  (6) 

 

( )*( )*
1 1
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S QS
r Tr T

S SQ

S S Q

e e
k k

r r

 
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   
 

 
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 (7) 

The value matching relationship, when the real option value upon exercise is equal to the net present 

value of the investment (NPV), is: 

 1 1 1

1 1 1
ˆ ˆ ˆ ˆ ˆˆ ˆ

PQ SQA P Q S k PQ k S Q K       (8) 

The three associated smooth pasting conditions can be expressed as: 

 1 1 1

1 1 1
ˆ ˆ ˆˆ ˆ

PQA P Q S k PQ     (9)  

 1 1 1

1 1 1 1
ˆ ˆ ˆ ˆ ˆˆ ˆ

PQ SQA P Q S k PQ k S Q      (10) 

 1 1 1

1 1 1 1
ˆ ˆ ˆ ˆˆ

SQA P Q S k S Q     (11) 

A quasi-analytical solution to the set of five equations 4-8-9-10-11 for 7 unknowns  

1 1 1 1 1
ˆ ˆˆ, , , , , ,P Q S A   is obtained by assuming ˆˆ ,P P Q Q  as in Adkins and Paxson (2016), and 

then finding  
1 1 1 1 1

ˆ , , , ,S A   .  An analytical solution is obtained by recognizing that: 

     1 1 1

1 1 1
ˆ ˆ ˆˆ ˆ/PQA k PQ P Q S            (12) 

and  

1 1 1
ˆ ˆ /PQ SQS k P k            (13) 

This implies that    
1 1 1               (14) 

Eliminating 
1A  from (8) yields: 

 
1 1

ˆ ˆ ˆ ˆˆ ˆ/ ( )PQ PQ SQk PQ k PQ k S Q K     (15) 

So      1 11 1
ˆˆ
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K

k PQ
 

 
   

 
 

                                                                     (16) 
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Eliminating 
1  and 

1  from the characteristic root equation (4) yields the quadratic equation: 
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
    

 



  

 

 

   

   

    





      



 

This equation has the simple quadratic solution:  

 

2

1

4

2

b b ac

a


  
   (18) 

Model 5    

Stochastic Price and Subsidy with a Deterministic Quantity 

We now modify the analysis to consider the impact on the investment decision of a permanent but 

uncertain government subsidy, denoted by S, but where the output Q sold per unit of time is 

deterministic.  

The PDE is: 
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2 2
2 2 2 22 2

2 2

2

2 2 2 2
2

1 1

2 2

0.

P S

PS P S P Q S

F F
P S

P S

F F F F
PS P Q S rF

P S P Q S

 

     

 


 

   
     

    

 (19) 

where X  denote the risk-neutral drift rates and r  the risk-free rate, (=r-). The solution to (19) is: 

 2 2 2

2 2 2ROV F A P Q S
  

  . (20) 

where 2  , 
2 and 2  are the power parameters for this option value function (allowing for a 

deterministic quantity). We expect that all power parameter values are positive. Also, the parameters 

are linked through the characteristic root equation found by substituting (20) in (19): 

 

     2 21 1
2 2 2 2 2 2 22 2

2 2 2 2 2

, , 1 1

0

P S

PS P S P Q S

Q

r

        

          

    

      . (21) 

The value matching relationship becomes:    

 2 2 2

2 2 2
ˆ ˆ ˆ ˆ ˆˆ ˆ

PQ SQA P Q S k PQ k S Q K       (22) 

Eliminating 
2  and 

2  from the characteristic root equation (21) yields the quadratic equation: 

   2

2 2 2{ } { } { } 0Q a b c       (23) 
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b
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    


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 
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  



 

 

The solution to this equation is again: 

 

2

2

4

2

b b ac

a


  
   (24) 
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The difference between (17) and (23) is that the Q volatility has been eliminated, but not the Q.  

Model 6    

Stochastic Price and Quantity with a Permanent Deterministic Subsidy  

We modify the analysis to consider the impact on the investment decision of a permanent  deterministic 

government subsidy, denoted by S, but where the output Q  and market price P are stochastic.  

The PDE is: 

2 2 2
2 2 2 23 3 3 3 3 3

32 2

1 1
0.

2 2
P Q PQ P Q P Q S

F F F F F F
P Q PQ P Q S rF

P Q P Q P Q S
       

     
      

        (25) 

The solution to (25) is: 

 3 3 3

3 3 3ROV F A P Q S
  

  . (26) 

where 3  , 
3 and 3  are the power parameters for this option value function.  The parameters are 

linked through the characteristic root equation found by substituting (26) in (25): 

 

     2 21 1
3 3 3 3 3 3 32 2

3 3 3 3 3

, , 1 1

0

P Q

PQ P Q P Q S
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r

        

          

    

     . (27) 

Eliminating 
3  and 

3  from the characteristic root equation yields the quadratic equation: 

   2

3 3 3{ } { } { } 0Q a b c       (28) 
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The solution to this equation is again:  

2

3

4

2

b b ac

a


  
                           (29) 

All of these models can easily be solved in Excel as shown in Figures 5, 6 and 7 below. 

 

Figure 5 

 

 

1

2
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4

5

6
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29
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31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

A B C D

SUBSIDIES MODEL 4

INPUT Stochastic  P & Q & S  

P 22.5  

Q 10  

S 10 per kwh

R 325 B3*B5+B4*B5

K 4000  

P 0.2

Q 0.2  

s 0.2

PQ 0

PS 0

SQ 0

r 0.08

P 0.04

Q 0  

s 0

OUTPUT 692.08 R*

a1 0.0550 0.5*(B8^2)+0.5*(B10^2)-B12*B8*B10+((B7^2)/(2*B34))*((B9^2)+2*B13*B9*B10+(B10^2))+B35 17

b1 0.0517 B15-B17-0.5*(B8^2)-0.5*(B10^2)+B11*B8*B9+B12*B8*B10-B13*B9*B10+B36 17

1 0.8244 (-B20+SQRT((B20^2)-4*B19*(-B14+B16+B17+B13*B9*B10)))/(2*B19) 18

1 1.2402 1+B21*((B7/(B28*B30*B29))-1) 16

1 2.0646 B21+B22 15

A1 0.0211 B33/(B21*(B28^B21)*(B29^B23)*(B25^B22)) 12

S^1 46.7077 (B22*B28*B30)/(B21*B31) 13

F1(P,Q,S) 555.5114 IF(B5<B25, B24*(B3^B21)*(B4^B23)*(B5^B22),B27) 3

F1(P,Q,S) 3757.2233 (B30*B28*B29)+(B32*B25*B29)-B7 8

P^ 22.5000  

Q^ 10.0000  

P PV  rP 13.7668 (1-EXP(-(B14-B15)*B38))/(B14-B15) 5

Q PV  rQ 9.9763 (1-EXP(-(B14-B16)*B38))/(B14-B16) 6

S PV  rS 9.9763 (1-EXP(-(B14-B17)*B38))/(B14-B17) 7

PQrPQ 3097.5246 B28*B29*B30

P^2Q^1rPQ^2 9594658.5041 (B28^2)*(B29^2)*(B30^2)

a2 -0.0517 (B7/B33)*(B11*B8*B9+B12*B8*B9-B13*B9*B10-(B10^2)) 17

b2 0.0517 (B7/B33)*(B16+B17+0.5*(B9^2)+2*(B13*B9*B10)+0.5*(B10^2)) 17

1 0.8244 B33/(B33+B32*B25*B29-B7) 15

T 20.00000  

PDE 0.0000 0.5*(B8^2)*(B3^2)*B43+0.5*(B9^2)*(B4^2)*B44+0.5*(B10^2)*(B5^2)*B45+B15*B3*B40+B16*B4*B41+B17*B5*B42-B14*B26 2

DROV1,P 20.3544 B21*B24*(B3^(B21-1))*(B4^B23)*(B5^B22)

DROV1,Q 114.6918 B23*B24*(B3^B21)*(B4^(B23-1))*(B5^B22)

DROV1,S 68.8944 B22*B24*(B3^B21)*(B4^B23)*(B5^(B22-1))

GROV1,P -0.1588 B21*(B21-1)*B24*(B3^(B21-2))*(B4^B23)*(B5^B22)

GROV1,Q 12.2103 B23*(B23-1)*B24*(B3^B21)*(B4^(B23-2))*(B5^B22)
GROV1,S 1.6548 B22*(B22-1)*B24*(B3^B21)*(B4^B23)*(B5^(B22-2))
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Figure 6 

 

These figures show an increased threshold over Models 1-2-3 with some of the same parameter values, 

because the facility is finite (20 years) rather than perpetual, although the investment opportunity is 

perpetual. Figure 5 shows a threshold of R*=692, with P,Q and S stochastic. Figure 6 shows a threshold 

of R*=534 with the same volatility for P and S, but Q is constant.  Figure 7 shows R*=673 with a 
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28
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44

45

A B C D

SUBSIDIES MODEL 5

INPUT Stochastic  P & S  

P 22.50  

Q 10.00  

S 10.00 per kwh

R 325.00 B3*B5+B4*B5

K 4000.00  

P 0.20

Q 0.20  

s 0.20

PQ 0.00

PS 0.00

SQ 0.00

r 0.08

P 0.04

Q 0.00  

s 0.00

OUTPUT 534.87 R*

a1 0.0217 0.5*(B8^2)+0.5*(B10^2)-B12*B8*B10+((B7^2)/(2*B34))*((B10^2))+B35 23

b1 0.0258 B15-B17-0.5*(B8^2)-0.5*(B10^2)+B12*B8*B10+B36 23

2 1.4151 (-B20+SQRT((B20^2)-4*B19*(-B14+B16+B17)))/(2*B19) 24

2 1.4123 1+B21*((B7/(B28*B30*B29))-1) 16

2 2.8274 B21+B22 14

A2 0.0003 B33/(B21*(B28^B21)*(B29^B23)*(B25^B22)) 12

S^2 30.9869 (B22*B28*B30)/(B21*B31) 13

F2(P,Q,S) 443.1266 IF(B5<B25, B24*(B3^B21)*(B4^B23)*(B5^B22),B27) 20

F2(P,Q,S) 2188.8695 (B30*B28*B29)+(B32*B25*B29)-B7 22

P^ 22.5000  

Q^ 10.0000  

P PV  rP 13.7668 (1-EXP(-(B14-B15)*20))/(B14-B15) 5

Q PV  rQ 9.9763 (1-EXP(-(B14-B16)*20))/(B14-B16) 6

S PV  rS 9.9763 (1-EXP(-(B14-B17)*20))/(B14-B17) 7

PQrPQ 3097.5246 B28*B29*B30

P^2Q^1rPQ^2 9594658.5041 (B28^2)*(B29^2)*(B30^2)

a2 -0.0517 (B7/B33)*(-(B10^2)) 23

b2 0.0258 (B7/B33)*(B16+B17+0.5*(B10^2)) 23

2 1.4151 B33/(B33+B32*B25*B29-B7)

   

PDE 0.0000 0.5*(B8^2)*(B3^2)*B43+0.5*(B10^2)*(B5^2)*B45+B15*B3*B40+B16*B4*B41+B17*B5*B42-B14*B26

DROV2,P 27.8702 B21*B24*(B3^(B21-1))*(B4^B23)*(B5^B22)

DROV2,Q 125.2908 B23*B24*(B3^B21)*(B4^(B23-1))*(B5^B22)

DROV2,S 62.5829 B22*B24*(B3^B21)*(B4^B23)*(B5^(B22-1))

GROV2,P 0.5142 B21*(B21-1)*B24*(B3^(B21-2))*(B4^B23)*(B5^B22)

   

GROV2,S 2.5803 B22*(B22-1)*B24*(B3^B21)*(B4^B23)*(B5^(B22-2))
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stochastic P and Q (since Q is volatile so is the extra revenue QS, even though S is assumed to be 

constant).  If a government wants to encourage early investment though green certificate allocations, 

intervening in the certificate trading market to minimize volatility and drift, or an arrangement where 

the allocation of these certificates is inversely related to Q (which seems fair) would lower the threshold 

S that justifies immediate investment. 

Figure 7 

 

14.3 Revenue Floors & Ceilings 

The real American collar option for a certain asset confines the effective price within specified floor 

(lower) and ceiling (upper) limits. Acting as a risk moderator, the collar offers protection against the 

adversity from extreme falls in the output price or rises in the procurement price while simultaneously 

extracting some incremental value from favourable prices. Consequently, the upside gains partially 
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SUBSIDIES MODEL 6

INPUT Stochastic  P & Q  

P 22.50  

Q 10.00  

S 10.00 per kwh

R 325.00 B3*B5+B4*B5

K 4000.00  

P 0.20

Q 0.20  

s 0.00

PQ 0.00

PS 0.00

SQ 0.00

r 0.08

P 0.04

Q 0.00  

s 0.00

OUTPUT 673.09 R*

a1 0.0534 0.5*(B8^2)+((B7^2)/(2*B34))*((B9^2))+B35 28

b1 0.0458 B15-B17-0.5*(B8^2)+B11*B8*B9+B36 28

3 0.8682 (-B20+SQRT((B20^2)-4*B19*(-B14+B16+B17)))/(2*B19) 29

3 1.2529 1+B21*((B7/(B28*B30*B29))-1) 16

3 2.1211 B21+B22 14

A3 0.0154 B33/(B21*(B28^B21)*(B29^B23)*(B25^B22)) 12

S^3 44.8092 (B22*B28*B30)/(B21*B31) 13

F3(P,Q,S) 544.8456 IF(B5<B25, B24*(B3^B21)*(B4^B23)*(B5^B22),B27) 26

F3(P,Q,S) 3567.8196 (B30*B28*B29)+(B32*B25*B29)-B7

P^ 22.5000  

Q^ 10.0000  

P PV  rP 13.7668 (1-EXP(-(B14-B15)*20))/(B14-B15) 5

Q PV  rQ 9.9763 (1-EXP(-(B14-B16)*20))/(B14-B16) 6

S PV  rS 9.9763 (1-EXP(-(B14-B17)*20))/(B14-B17) 7

PQrPQ 3097.5246 B28*B29*B30

P^2Q^1rPQ^2 9594658.5041 (B28^2)*(B29^2)*(B30^2)

a2 0.0000 (B7/B33)*(B11*B8*B9+B12*B8*B9) 28

b2 0.0258 (B7/B33)*(B16+B17+0.5*(B9^2)) 28

3 0.8682 B33/(B33+B32*B25*B29-B7)



20 
 

compensate the downside losses. Unlike financial options, real American perpetuities are currently 

unobtainable from the market, but governments may be agreeable to grant and underwrite price limits 

in certain circumstances. The pursuance of an energy diversity goal may motivate governments to enact 

a policy that subsidizes renewable energy investors by guaranteeing a fixed price in the form of a 

contract-for-differences deal.  Similarly, foreign investors are induced to locate in countries whose 

governments grant subsidized or preferential procurement prices for raw materials or energy. The role 

of these subsidies is to raise the investment option value and to reduce the investment threshold, which 

not only render an investment more attractive but also hasten its exercise.  

In a real option framework there are several articles on the effect of a subsidy on the investment value 

and policy. Dixit (1991) studies price ceilings for regulated industries.  Boomsma et al. (2012) evaluate 

energy subsidies. Barbosa et al. (2015) look at investment and tax subsidies, Adkins and Paxson (2014) 

consider permanent and retractable subsidies as do Boomsma and Linnerud (2015), but not revenue 

ceilings.  Armada et al. (2012) investigate a subsidy in the form of a perpetual put option on the output 

price with protection against adverse price movements.  None of these authors consider perpetual collar 

options. From our general model, separate price floor subsidies and price ceilings are specific examples 

of general collar options imposed on the active project value. 

Here, output price gains are restricted to an upper ceiling limit so the firm is sacrificing upside potential. 

Consequently, a price collar option contributes both positively and negatively to the active project value. 

Eventually, we examine the impact of the collar option on the investment opportunity value and the 

threshold. The two collar elements produce distinctive effects. The first element arises from the 

presence of a floor limit, which makes the investment opportunity more attractive and leads to an 

earlier exercise. In contrast, the second element due to a price ceiling limit is only partially reflected in 

the investment opportunity. Although the presence of a price ceiling results in a fall in the investment 

option value, there is no impact at all on the investment threshold.  

Fundamental Model 

For a firm in a monopolistic situation confronting a single source of uncertainty due to price variability, 

the opportunity to invest in an irretrievable project at cost K  depends on the price evolution, which is 

specified by: 

 d d dP P t P W   , (1) 
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where   denotes the expected price risk-neutral drift,   the price volatility, and dW  an increment of 

the standard Wiener process. Using contingent claims analysis, the option to invest in the project  F P  

follows the risk-neutral valuation relationship: 

  
2

2 21
2 2

0
F F

P r P rF
P P

 
 

   
 

, (2) 

where r   denotes the risk-free interest rate and r    the rate of return shortfall. The generic 

solution to (2) is: 

   1 2

1 2F P A P A P 
  , (3) 

where 1 2,A A  are to be determined generic constants and 1 2,   are, respectively, the positive and 

negative roots of the fundamental equation, which are given by: 

 

2

1 1
1 2 2 22 2 2

2
,

r r r 
 

  

    
       

   
. (4) 

In (3), if 1 0A   then F  is a continuously increasing function of P  and represents an American 

perpetual call option, Samuelson (1965), while if 2 0A   then it is a decreasing function and represents 

a put option, Merton (1973). 

Investment and Collar Option 

 

The valuation of an active project with a collar is conceived over three mutually exclusive exhaustive 

regimes, I, II and III, defined on the P  line, each with its own distinct valuation function. Regimes I, II 

and III are defined by ,LP P L HP P P   and 
HP P , respectively.  We conjecture that the optimal 

price threshold ˆ
CP  triggering an investment lies between the lower and upper collar price limits, 

ˆ
L C HP P P  .  

If we can treat the optimal trigger price level as lying between LP  and HP , then the optimal solution is 

obtainable from equating the investment option value with trigger level ˆ
CP P  with the value for an 
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active project, , with ˆ
CP P  for L HP P P   net of the investment cost K . The solution is found when 

both the value-matching relationship:  

 1 1 2

0 1 2

PQ
A P A P A P K

  


      (5) 

and its smooth-pasting condition expressed as: 

 1 1 2

1 0 1 1 2 2  
PQ

A P A P A P
    


     (6) 

holds when evaluated for ˆ
CP P . This reveals:  

    11 1 2
2

1 1

ˆ
ˆ

1 1

C
C

P Q
K A P

  

  


 

 
,             (7) 

 
1

2 12
0 2 1

1 1

ˆ 1 ˆ
1 1

C
C

KP
A A P A


 

 


 

   
  

. (8) 

Since the real collar model formulates the existence of both a floor and ceiling price, two distinct 

models, each representing the floor and ceiling price separately, can be derived from this general model. 

The basic payoff diagram for a real collar is shown in Figure 8, where the asset value V ranges from 0 to 

300, and the real call and put have the same exercise price K=150, and the same premiums=50. 

Figure 8
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Figure 9 illustrates both the intrinsic (zero premium) and real call and put option on an asset V that 

ranges from 0 to 300.  Note that at the extremes the call is equal to zero when V is zero, but the put is 

not zero even though V=300, so the real call and put values are asymmetric. 

Figure 9 

 

EXERCISE 14.1 

Sonja believes she can build a solar plant for K=$4000 that will produce Q=10 KWh per year, that can be 

sold for P=$10 per KWh, P*Q=R.   1

1ROV B R


 , where 1 =2. For a subsidy  , the threshold R̂ that 

justifies immediate investment is: 
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. If r=.07, electricity 

=.04,  a proportional subsidy  =1, should Sonja build now, or try to sell this  opportunity for  $2500? 

PROBLEM 14.6 

Sonja believes she can build a solar plant for K=4000 that will produce Q=10 KWh per year, that can be 

sold for P=22.25 per KWh, P*Q=R.   1

1ROV B R


 , where 1  is the solution to a simple quadratic 

equation. For a proportional subsidy  , the threshold R̂ that justifies immediate investment is:  
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ROC PUT IF(B2>B15,(-B3/(B16-1))*(B2/B15)^B16,B14)

K-V MAX(B3-B2,0)

V* (B16/(B16-1))*B3

2 0.5-(B5-B6)/(B4^2)-SQRT(((B5-B6)/(B4^2)-0.5)^2 + 2*B5/(B4^2))
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If r=.08, electricity  =.04, R volatility=.2, subsidy  =.10, what R would justify immediate investment, 

and what is the value of this investment opportunity? 
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